0%

Min Stack, LRU Cache

Min Stack

lc155. Min Stack ($\leftarrow$ click)
Description
Design a stack that supports push, pop, top, and retrieving the minimum element in constant time.
Implement the MinStack class:
MinStack() initializes the stack object.
void push(int val) pushes the element val onto the stack.
void pop() removes the element on the top of the stack.
int top() gets the top element of the stack.
int getMin() retrieves the minimum element in the stack.
You must implement a solution with O(1) time complexity for each function.

Example
Example 1:

Input
[“MinStack”,”push”,”push”,”push”,”getMin”,”pop”,”top”,”getMin”]
[ [],[-2],[0],[-3],[],[],[],[] ]

Output
[null,null,null,null,-3,null,0,-2]

Explanation
MinStack minStack = new MinStack();
minStack.push(-2);
minStack.push(0);
minStack.push(-3);
minStack.getMin(); // return -3
minStack.pop();
minStack.top(); // return 0
minStack.getMin(); // return -2

Constraints
-231 <= val <= 231 - 1
Methods pop, top and getMin operations will always be called on non-empty stacks.
At most 3 * 104 calls will be made to push, pop, top, and getMin.

Solution

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
class MinStack:

def __init__(self):
self.minStack = []

def push(self, val):
if not self.minStack: # push first element
self.minStack.append((val,val))
else:
self.minStack.append((val,min(self.minStack[-1][-1],val))) # push (val, min val)

def pop(self):
self.minStack.pop()

def top(self):
return self.minStack[-1][0]

def getMin(self):
return self.minStack[-1][-1]

LRU Cache

lc146 LRU Cache ($\leftarrow$ click)
Description
Design a data structure that follows the constraints of a Least Recently Used (LRU) cache.
Implement the LRUCache class:
LRUCache(int capacity) Initialize the LRU cache with positive size capacity.
int get(int key) Return the value of the key if the key exists, otherwise return -1.
void put(int key, int value) Update the value of the key if the key exists. Otherwise, add the key-value pair to the cache. If the number of keys exceeds the capacity from this operation, evict the least recently used key.
The functions get and put must each run in O(1) average time complexity.

Example
Example 1:

Input
[“LRUCache”, “put”, “put”, “get”, “put”, “get”, “put”, “get”, “get”, “get”]
[[2], [1, 1], [2, 2], [1], [3, 3], [2], [4, 4], [1], [3], [4]]
Output
[null, null, null, 1, null, -1, null, -1, 3, 4]

Explanation
LRUCache lRUCache = new LRUCache(2);
lRUCache.put(1, 1); // cache is {1=1}
lRUCache.put(2, 2); // cache is {1=1, 2=2}
lRUCache.get(1); // return 1
lRUCache.put(3, 3); // LRU key was 2, evicts key 2, cache is {1=1, 3=3}
lRUCache.get(2); // returns -1 (not found)
lRUCache.put(4, 4); // LRU key was 1, evicts key 1, cache is {4=4, 3=3}
lRUCache.get(1); // return -1 (not found)
lRUCache.get(3); // return 3
lRUCache.get(4); // return 4

Constraints

1 <= capacity <= 3000
0 <= key <= 104
0 <= value <= 105
At most 2 * 105 calls will be made to get and put.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
class LRU Cache:
def __init__(self, capacity):
self.cap = capacity
self.cache = collections.OrderedDict()

def get(self, key):
if key not in self.cache:
return -1
self.cache.move_to_end(key)
return self.cache[key]

def put(self, key, value):
if key in self.cache:
self.cache[key] = val
self.cache.move_to_end(key)
return
if len(self.key) >= self.cap:
self.cache.popitem(last=False)
self.cache[key] = val
-------------End of blogThanks for your reading-------------